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Abstract

The concept of (meta) modeling combines an intuitive way of formalizing the structure of an application do-
main with a high expressiveness that makes it suitable for a wide variety of use cases and has therefore become
an integral part of many areas in computer science. While the definition of modeling languages through the use of
meta models, e.g. in UML, is a well-understood process, their validation and the extraction of behavioral infor-
mation is still a challenge.
In this paper we present a novel approach for dynamic model analysis along with several fields of application.
Examining the propagation of information along the edges and nodes of the model graph allows to extend and sim-
plify the definition of semantic constraints in comparison to the capabilities offered by e.g. the Object Constraint
Language. Performing a flow-based analysis also enables the simulation of dynamic behavior, thus providing an
”abstract interpretation”-like analysis method for the modeling domain.

1 Introduction and Motivation
Meta modeling is an easy and concise way to formalize the structure of an application domain. Today, it is widely
spread in computer science, most notably in the field of software engineering where the internal design of software
is often described using models. Approaches like the Model-driven Architecture (MDA) improve the development
process e.g. through automated code generation. Arguably the most important industrial standard in this area is the
Unified Modeling Language (UML) which in turn is based on the Meta-Object Facility (MOF) framework1.

However, the abstract syntax as defined by the meta model is often not sufficient to guarantee well-formedness.
Complex restrictions that cannot be expressed through the syntax are known as static semantics. To a certain degree,
they can be implemented using the Object Constraint Language (OCL), thereby extending the expressiveness of the
modeling language. Due to the static nature of OCL, it is not capable of validating dynamic properties that are
highly dependent on the context in which the elements appear, e.g. the correct nesting of parallel paths in activities.

An advantage of using models as means of specifying systems is their versatility. In addition to code generation
or model transformation, their use can also be leveraged by extracting implicitly contained information through
an evaluation of model elements and their mutual relations. This may include metrics applicable for the modeling
domain, e.g. Depth of Inheritance Tree (DIT) or Number of Children (NOC), or the compliance with a set of
predefined modeling guidelines. Depending on the range of application, extracting knowledge about the dynamic
properties of a model may even allow to identify inactive fragments in a way similar to dead code elimination in
the translation of software programs. To statically deduce information about the dynamic behavior of a model,
e.g. to calculate the valid execution paths of workflows and thereby approximating their runtime behavior, can be
considered an abstract interpretation of dynamic semantics.

Current methods are usually not capable of performing a static analysis of dynamic aspects in order to express
context-sensitive well-formedness rules or to simulate workflows. The approach discussed in this paper is designed
to overcome these limitations by extending the static character of OCL constraints with a dynamic flow analysis,
thus offering a powerful and generically applicable method for model validation and simulation. It is based on the
data-flow analysis (DFA) technique, a well-understood formalism used in compiler construction for deriving opti-
mizations from a program’s control flow graph. The adaption of the DFA algorithm is simplified by the conceptual
similarities between the areas of compiler construction and (meta) modeling: Both rely on the definition of domain
specific languages (DSL) which operate on (at least) two layers of abstraction.

The concept of using DFA for model analysis has been introduced in [4]. In this paper we extend and update
this description along with an evaluation of the advantages, possible shortcomings and proposed solutions based on
the experience gained up to now. Additionally, we discuss several use cases which are in the focus of our research
and present the current status of our implementation.

This paper is structured as follows: The basic concept of data-flow analysis for models along with a definition
of how it can be specified and a corresponding evaluation algorithm is detailed in Section 2. Several use cases are
presented in Section 3 before we give a summary of the concepts described in this paper and an outlook on future
developments.

1Specifications are available at OMG’s website: http://www.omg.org/technology/documents/modeling_spec_catalog.htm
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2 Data-Flow Analysis on Models
As outlined in our previous literature, the conceptual similarities between context-free grammars, which form the
basis for many algorithms in compiler construction, and MOF’s multi-layered architecture of (meta) models allow
to implement a DFA-like analysis method for the modeling domain. We aligned the four MOF levels (M3-M0)
with the abstraction layers of attribute grammars2 and devised a model-based attribution technique for assigning
data-flow equations to meta model classes and evaluating them for arbitrary models.

It was proposed that the attributes containing the semantic rules (the equivalent to the data-flow equations)
should be given a type definition consisting of a name, a data type and an initial value. Occurrences of these
definitions can then be assigned to M2 classes along with a rule that will calculate the results for M1 objects
depending on the values available at other attributes. If a model shall be analyzed according to a given attribution,
these occurrences have to be instantiated at the according model objects. An evaluation algorithm is then responsible
for executing the rules in a valid order ensuring that required input arguments are available at the time of execution.
This process is repeated until all attribute values are stable (the fix-point). Several iterations of (re)evaluating the
attribute instances may be necessary until the results have been propagated along all (cyclic) paths. To keep in line
with the notion that everything is a model, a meta model describing the structure of the attribution was given.

2.1 Refined Definition

(a) Refined attribution meta model (AttrMM) (b) Attr. instance meta model (AttrM)

Figure 1: Meta models for data flow definitions

Figure 1(a) shows the refined attribution meta model AttrMM: AttributionCollections serve as containers for a
set of Attributions which consist in turn of AttributeDefinitions and AttributeExtensions. AttributeDefinitions have
to be assigned a dataType. Their initial value is returned by an AttrSemanticRule of the type AttrAssignment3.
Occurrences (AttrOccurrence) can be attached to classes in the original meta model through AttributeExtensions.
They possess an AttrSemanticRule which calculates their iteration value.

This design has the advantage of introducing dependencies only from the attribution to the meta model but not
the other way round. This way, attributes can be defined and stored separate from the meta model, an important
aspect when integrating with existing tools.

To ensure the compatibility with existing meta modeling frameworks, the resulting attribution instances were
given their own meta model AttrM which can be seen in Figure 1(b). Each AttributeInstance has a value slot for
storing intermediate and final evaluation results. Attribute instances representing the results are connected to their
defining AttrOccurrences in the attribution (and thus to the attributed meta model class) as well as to the concrete
model object to whose meta class the corresponding AttributeExtension was assigned.

An important aspect of modeling is the concept of generalization. Therefore, when creating attribute instances
and attaching them to model elements, the generalization hierarchy of the meta model has to be considered, i.e. an
attribute connected to class A should implicitly be available at instances of subclasses of A. Also, in compliance with
the MOF standard, support for the redefinition of attributes should be provided. This means if two AttrOccurrences
OA and OB of the same AttributeDefinition O were assigned to classes A and B and B is a subclass of A, then OB
overrides OA at all instances of B.

2It was shown that, while attribute grammars can be used to define data-flow equations, in their original form they are too restrictive and do
not fit seamlessly into the modeling domain. Therefore, a model-based solution was chosen that drops most of these limitations at the cost of a
slightly more complex - but also more versatile - evaluation algorithm.

3An assignment returns a value of the specified data type while a constraint just evaluates to ”true” or ”false”, ”false” representing a detected
error in the model indicated to the user by the given violationID.
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We assumed that the input dependencies, i.e. the occurrences whose instance values are required as arguments at
other instances, will be explicitly specified by the user. However, this has proven to be impractical for two reasons:
Aside from complicating the design of a DFA analysis, declaring relations on the meta layer has the drawback of
introducing unnecessary instance dependencies if only a subset is actually needed. Instead, the evaluation algorithm
is now responsible for requesting the calculation of required input for attribution rules during their evaluation.

2.2 Attribute Evaluation
DFA algorithms like the work-list approach assume that the output relationships are known beforehand in order
to update the set of depending variables after each iteration. Since we are working with dynamic dependencies,
another approach was chosen for evaluating an attribution for a given model: First, attributes must be instantiated
in accordance to the given semantics and initialized with their start value. Then, the semantic rules have to be
invoked in a valid order, backtracking their dependencies during execution, storing results and passing them as
input arguments to the calling rules. This is repeated until the fix-point of the analysis has been reached.

The dependencies between attribute instances, stemming from their use as input arguments of semantic rules,
impose the structure of a directed acyclic graph originating from a single root element on the execution order. This
graph can be viewed as the result of a depth-first search along the input relations of the attributes, however in the
case of cyclic dependencies the target x of the responsible back edge y → x is now substituted by a newly created
virtual node x′. The resulting tree-like representation (which may still contain forward and cross edges) is referred
to as dependency chain. After each bottom-up evaluation run the virtual nodes are updated with the new value
available at their reference node, i.e. the result at x is transferred to x′. The evaluation is repeated until the value at
each virtual node equals the result at its reference node which means that the fix-point has been reached.

As an example, consider that we need to determine the set of predecessors in a flow graph lying on a direct path
from the start node while omitting optional routes. This can be achieved by adding the local node to an intersection
of the same (recursively calculated) sets at preceding nodes. Nodes with no predecessors then correspond to leaves
in the dependency chain while cyclic paths induce back edges and therefore the creation of virtual nodes.

A model may contain multiple dependency chains while at the same time a single chain may also split up into
several chains if a root attribute instance was chosen that is not the absolute root, i.e. other attributes depend on it.

Because this algorithm executes the semantic rules according to their dependencies, the amount of redundant
calculations is negligible. Nevertheless, there is still room for optimization, e.g. by calculating starting values only
for leaves, through isolated recomputation of cycles or by parallelizing the evaluation. Also, a formal and practical
evaluation of the algorithm’s performance is necessary.

3 Use Cases
To demonstrate the applicability of the approach, we now give several use case examples which can be implemented
using the model-based DFA technique: Section 3.1 demonstrates common compiler construction analysis while 3.2
and 3.3 deal with the domain of business processes (but are also applicable e.g. for UML activity diagrams).

Additional application fields which are currently under evaluation include the extraction of metrics in the area
of model-driven testing and the definition of OCL constraints that avoid complex navigation statements and can be
therefore more easily adjusted if the meta model changes.

3.1 Analysis of Control-Flow Graphs
To simulate a traditional data-flow analysis we have implemented a meta model for control-flow graphs (CFG) (cf.
Figure 2(a)) and instantiated the CFG model that can be seen in Figure 2(b) which will serve as an example.

An attribution model was created containing the following attributes for node along with their assignment rules
based on an extended OCL syntax which allows to request attribute values by triggering the evaluator module:

is reachable: self.incoming.source.is reachable()→includes(true)

is live: self.outgoing.target.is live()→includes(true)

all predecessors: self.incoming.source.name→ union(self.incoming.source.all predecessors())→asSet()

scc id: let self pred : Set(String) = self.all predecessors()→including(self.name) in
if (self.incoming.source.all predecessors()→asSet()=self pred) then self pred→hashCode() else 0 endif)

scc nodes: if (not(self.scc id() = 0)) then self.incoming.source→collect(predNode : node |
if (predNode.scc id()=self.scc id())
then predNode.scc nodes() else Set{} endif) →flatten()→asSet()→including(self.name) else Set{} endif

While is reachable determines if a node can be reached from the start node by checking if at least one predecessor
is reachable (the start node has a distinct rule setting is reachable to true), is live checks if a path to the end node
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(a) A simple control-flow graph meta model (b) An example control-flow graph model

Figure 2: Control-flow graph example

exists. As expected, the evaluation returns that X is not reachable and Y is not live. Defining the semantic rules as
constraints, corresponding exceptions are thrown indicating the type and the location of the error.

The list of transitive predecessor nodes is calculated through all predecessors by creating the union of the
all predecessors attributes at the source nodes of incoming edges and adding to it the set of names of these nodes.

The attribute scc id assigns a unique ID to each node that is part of a cyclic flow. This is accomplished by
comparing the union of the all predecessors attributes at preceding nodes to the local value of this attribute. If both
sets contain the same elements, an ID is generated from the hash codes of the nodes that take part in the cycle.

Now, using the scc id, the semantic rule for scc nodes is able to determine which nodes take part in a cycle by
building the set of predecessors with the same scc id. Figure 3 shows the final values for this attribute which can
again be used as input for the algorithms presented below.

Calculating scc nodes requires 220-310 rule executions using an unoptimized evaluation algorithm. Once the
OCL environment has been initialized, overall execution takes about 110ms on a standard desktop computer. Im-
plementing the rules in Java leads to more verbose definitions but reduces the time required to about 50ms.

3.2 Business Process Decomposition
Decomposing a business process into a hierarchical layout of single-entry-single-exit (SESE) components is a
common requirement, e.g. allowing to translate BPMN processes to BPEL or validate workflow graphs (cf. 3.3).
In [3], the authors describe a decomposition algorithm based on token flow analysis that is able to handle cyclic

Figure 3: Evaluation result: Nodes that are part of
cycles

(a) Process graph with annotated token flow

(b) A business process hierarchically divided into SESE components

Figure 4: Decomposition of (business) processes [3]

graphs and to classify the detected components. Tokens are created at branches and are propagated along the
control-flow as can be seen in Figure 4(a). In a second step, the tokens originating from the same vertex converge
and are removed (indicated by curly brackets). Similar token labelings identify the SESE components although
unambiguous classification and cyclic paths require some additional handling. Figure 4(b) shows a decomposition.
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Since the algorithm is based on the creation and propagation of information, it is an ideal use case for a generic
DFA-based approach as opposed to a proprietary implementation. Several steps of this algorithm have been realized
(including the cycle-detection presented above) with the goal of a comparison to the authors’ implementation.

3.3 BP Validation and Transformation
Using the method presented in [5], the soundness of (a)cyclic business processes - i.e. the absence of local deadlocks
and lack of synchronization - can be tested in linear time. This is accomplished by traversing the SESE hierarchy
in bottom-up direction, applying heuristics to categorize each sub-graph according to the structure of its elements.
This way, if an error is found, the SESE context in which it appears allows to track down its approximate location.
Implemented using DFA definitions, this algorithm can be easily integrated into the decomposition process in order
to perform the validation already during the component identification phase.

Making use of the SESE decomposition also enables to transform graph-oriented BPMN diagrams (Business
Process Modeling Notation) to block-oriented BPEL code (Business Process Execution Language). The author of
[1] describes data-flow equations that, if computed for the SESE fragments, yield information on how the respective
component can be translated to BPEL code. Since this algorithm is already defined in the form of a data-flow
analysis, the implementation using the model analysis approach is straightforward.

4 Conclusions and Future Investigations
In this paper we have described a refined version of our data-flow based approach to model analysis that introduces
the notion of DFA to the modeling domain and is built upon widely-accepted standards and definitions.

To the best of our knowledge there exists no comparable methodology in the context of model analysis although
different DFA techniques have been considered for use in the modeling domain: The authors of [2] discuss the
advantages of control-flow information for the testing phase of the software development process. A concrete use
case is presented in [6], using flow-analysis to derive definition/use relationships between actions in state machines.

The presented formal method completes common techniques like OCL with the possibility of describing (cyclic)
information flows in the model graph based on local propagation and (re)calculation of attribute values. This allows
a more robust definition of semantic constraints since complex navigation statements which are a common drawback
of OCL can be avoided. Instead, the required information can be ”transported” to where it is needed. Aside from
validation scenarios, the ability to extract context-sensitive data enables to analyze dynamic aspects of models,
e.g. valid execution paths in control-flows or the SESE components that make up a business process definition.
This way, model-based DFA constitutes a generic and versatile ”programming-language” for implementing a wide
variety of algorithms that would otherwise each require a proprietary definition.

To verify the feasibility of this approach, the Model Analysis Framework (MAF) project was created to serve
as basis for performance tests under realistic settings and allow to evaluate future extensions of the presented defi-
nitions and algorithms. It was designed to act as a parametrizable and modular research platform that for example
allows to choose between different inheritance semantics and evaluation algorithms as well as at the same time
being suited for productive use. MAF, which is based on the Eclipse Modeling Framework (EMF) and the Eclipse
OCL interpreter, will soon be available at http://code.google.com/p/model-analysis-framework/.

Aside from formalizing and improving the evaluation algorithm to achieve a better theoretical and practical
performance the main focus in the ongoing research is on the implementation and evaluation of further use cases.
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